Highly flexible pseudocapacitor based on freestanding heterogeneous MnO2/conductive polymer nanowire arrays.
نویسندگان
چکیده
Flexible electronics such as wearable electronic clothing, paper-like electronic devices, and flexible biomedical diagnostic devices are expected to be commercialized in the near future. Flexible energy storage will be needed to power these devices. Supercapacitor devices based on freestanding nanowire arrays are promising high power sources for these flexible electronics. Electrodes for these supercapacitor devices consisting of heterogeneous coaxial nanowires of poly (3,4-ethylenedioxythiophene) (PEDOT)-shell and MnO(2)-core materials have been shown in a half cell system to have improved capacitance and rate capabilities when compared to their pure nanomaterials; however, their performance in a full cell system has not been fully investigated. Herein, these coaxial nanowires are tested in both a symmetric and an asymmetric (utilizing a PEDOT nanowire anode) full cell configuration in the aspect of charge storage, charge rate, and flexibility without using any carbon additives and polymer binders. It is found that the asymmetric cell outperforms the symmetric cell in terms of energy density, rate capability, and cycle ability. The asymmetric device's electrode materials display an energy density of 9.8 Wh/kg even at a high power density of 850 W kg(-1). This device is highly flexible and shows fast charging and discharging while still maintaining 86% of its energy density even under a highly flexed state. The total device is shown to have a total capacitance of 0.26 F at a maximum voltage of 1.7 V, which is capable of providing enough energy to power small portable devices.
منابع مشابه
A new type of porous graphite foams and their integrated composites with oxide/polymer core/shell nanowires for supercapacitors: structural design, fabrication, and full supercapacitor demonstrations.
We attempt to meet the general design requirements for high-performance supercapacitor electrodes by combining the strategies of lightweight substrate, porous nanostructure design, and conductivity modification. We fabricate a new type of 3D porous and thin graphite foams (GF) and use as the light and conductive substrates for the growth of metal oxide core/shell nanowire arrays to form integra...
متن کاملHierarchically Structured Co3O4@Pt@MnO2 Nanowire Arrays for High-Performance Supercapacitors
Here we proposed a novel architectural design of a ternary MnO2-based electrode - a hierarchical Co3O4@Pt@MnO2 core-shell-shell structure, where the complemental features of the three key components (a well-defined Co3O4 nanowire array on the conductive Ti substrate, an ultrathin layer of small Pt nanoparticles, and a thin layer of MnO2 nanoflakes) are strategically combined into a single entit...
متن کاملRedox-exchange induced heterogeneous RuO2-conductive polymer nanowires.
A redox exchange mechanism between potassium perruthenate (KRuO4) and the functional groups of selected polymers is used here to induce RuO2 into and onto conductive polymer nanowires by simply soaking the polymer nanowire arrays in KRuO4 solution. Conductive polymer nanowire arrays of polypyrrole (PPY) and poly(3,4-ethylenedioxythiophene) (PEDOT) were studied in this work. SEM and TEM results ...
متن کاملAluminum Nanowire Arrays via Directed Assembly.
Freestanding and vertically-oriented metal nanowire arrays have potential utility in a number of applications, but presently lack a route to fabrication. Template-based techniques, such as electrodeposition into lithographically defined nanopore arrays, have produced well-ordered nanowire arrays with a maximum pitch of about 2 μm; such nanowires, however, tend to cluster due to local attractive...
متن کاملAn Ultralong, Highly Oriented Nickel-Nanowire-Array Electrode Scaffold for High-Performance Compressible Pseudocapacitors.
Ultralong, highly oriented Ni nanowire arrays are used as the electrode scaffold to support metal-oxide- and conductive-polymer-based electrode materials with a high mass loading; the as-obtained asymmetric supercapacitor can be compressed by fourfold and exhibits superior energy and power densities with ultrahigh cycle stability.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 14 10 شماره
صفحات -
تاریخ انتشار 2012